Grades 11 - 12

Program Title: AP Gel Electrophoresis

Quarter 3

Number of Hours: 4

This lesson provides instructional support towards understanding of the following Performance Expectations.

HS-LS3-1 Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

HS-LS3-2 Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

Science and Engineering Practices	Disciplinary Core Ideas	Cross Cutting Concepts (CCCs)
Planning and Carrying Out Investigations	LS3.A: Inheritance of Traits	Cause and Effect
Asking Questions and Defining Problems	LS1.A: Structure and Function	Systems and System Models
Using Mathematics and Computational Thinking		Connections to Nature of Science: Science is a Human Endeavor
Maryland College and Career-Ready Standar	rds (MD-CCRS)	
ELA/Literacy	RST.11 - 12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.	
Mathematics	MP.4 Model with Mathematics. HS-IF.C7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	

AP GEL ELECTROPHORESIS

OBJECTIVES:

- Explain the principles at work in gel electrophoresis
- Describe the role of restriction enzymes in biotechnology
- Perform gel electrophoresis on restricted DNA samples
- Estimate the lengths of restricted fragments of an unknown DNA sample using electrophoresis results obtained for a known DNA sample.

	STUDENT DOES	TEACHER DOES
ENGAGEMENT 25 minutes	Contributes to group discussion on gel electrophoresis and other applications of recombinant DNA technology.	Leads verbal formative assessments of prior knowledge. Provides overview of objectives and expectations.

EXPLORATION	Reviews experiment procedure, predicts outcomes of each activity, pours agarose gel	Reviews foundational concepts including structure of DNA macromolecule, role of DNA in
60 minutes	into mold, practices accurate micropipetting; extracts solid gel from mold.	genetic code and consequences of copying errors or other changes in nucleotide sequence.
		Models techniques and monitors student mastery.

The the the flexibility 70 minutes Read record generation crimit	es gel in electrophoresis chamber, loads chree DNA samples into gel, performs trophoresis, and stains gel. Is and presents summary of article on mbinant DNA technology used to etically modify organisms and conduct inal investigations.	Monitors student progress and checks for understanding. Facilitates discussion. Models plotting data on log-linear graph paper and constructing best fit line.
--	--	--

ELABORATION	De-stains gel and visualizes DNA fragments using ultraviolet or visible light.	Monitors student progress. Facilitates discussion.
30 minutes	Debates ethical issues related to the use of recombinant DNA technology.	Asks students to identify and propose
	Measures fragment migration distances.	explanations for anomalies.
	Plots data on log-linear graph paper and constructs best-fit line.	

EVALUATION 25 minutes	Uses best fit-line to estimate sizes of unknown DNA sample fragments. Shares results in group discussion. Packs and cleans up.	Facilitates discussion. Reviews objectives and informally assesses student learning.
	•	